
Communicating Physical Properties through 
Robot Object Manipulation 

Xiang Pan 
Kyoto University 
Kyoto, Japan 

pan.xiang.35w@st.kyoto-u.ac.jp 

Malcolm Doering 
Kyoto University 
Kyoto, Japan 

doering@i.kyoto-u.ac.jp 

Stela Hanbyeol Seo 
Kyoto University 
Kyoto, Japan 

stela.seo@i.kyoto-u.ac.jp 

Takayuki Kanda 
Kyoto University 
Kyoto, Japan 

kanda@i.kyoto-u.ac.jp 

Abstract—When verbal communication is limited, robots pass-
ing objects to humans without providing additional information 
(e.g., temperature, weight) can result in potential poor handovers 
and disappointing user experiences. To address this issue, we 
introduced a method for conveying object properties through 
robot manipulation. We began by proposing four criteria for 
selecting properties from two widely recognized sets: one focusing 
on the semantic features of objects and the other on tactile 
sensations. These properties were clustered into eight physical 
categories: hot, cold, heavy, light, slippery, sticky, fragile, and 
smelly. Professional actors were then recruited to demonstrate 
these properties through object manipulation, from which we 
extracted a set of fundamental yet expressive manipulation behav-
iors, i.e., key elements, that help people recognize these properties. 
These elements were implemented on a dual-arm robot, followed 
by an evaluation of their utility through participant feedback. To 
generate time-constrained sequences of elements, we developed 
a property-based motion planner that balances time and utility 
in conveying object properties. Results from a within-subjects 
study involving 20 participants showed that individuals could 
accurately interpret the properties conveyed by robot object ma-
nipulation, validating the effectiveness of the proposed approach. 

Index Terms—non-verbal communication, object properties, 
robot object manipulation, property-based motion planner 

I. INTRODUCTION 

Effective non-verbal communication between robots and 
humans is crucial in dynamic and unpredictable environments. 
Imagine a scenario in a noisy restaurant kitchen where a 
service robot needs to hand over a freshly prepared dish to a 
waiter. The plate is extremely hot, and while a verbal warning 
could suffce in a quiet setting, the loud clamor of the kitchen 
makes it diffcult for the waiter to hear. Furthermore, the heat 
of the plate cannot be reliably perceived by simply observing 
its appearance. In such situations, a robot capable of conveying 
hot through intuitive hand motions—such as quickly fanning 
the air around the object (Fig. 1 (a)), rapidly shaking the hand 
(Fig. 1 (b)), or frequently switching the object between hands 
(Fig. 1 (c))—could effectively communicate the potential 
danger without relying on verbal cues. 

Similarly, imagine a robot assisting with the curation and 
transport of delicate artifacts in a museum. If the robot encoun-
ters a biological specimen that emits a strong and unpleasant 
odor, it needs to alert the staff discreetly as speaking aloud 
is not appropriate in such a quiet and respectful environment. 
In this case, covering its nose with one hand while carefully 

Fig. 1: Communication of object properties during handovers. 

holding the artifact with the other (Fig. 1 (d)) allows the 
robot to signal smelly to the nearby staff without disturbing 
visitors. These examples highlight the importance of non-
verbal communication of object properties, especially when 
verbal communication is limited. 

Extensive research has focused on using robot gestures 
for non-verbal communication, covering intentions [1], [2], 
emotions [3], [4], and personality [5], [6]. However, the 
communication of object properties, particularly through robot 
manipulation, remains signifcantly underexplored. To bridge 
this gap, our study makes three main contributions. First, we 
identify eight categories of object properties that are com-
monly communicated during handover interactions. Second, 
we propose a property-based motion planner capable of gen-
erating optimal hand action sequences to convey these prop-
erties. Third, we demonstrate the feasibility of our approach 
through human studies, showing that people can accurately 
infer object properties from robot object manipulation. 
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II. RELATED WORK 

A. Gestures for Communications 

Gestures play a crucial role in human communication 
by enhancing engagement, clarifying speech, and supporting 
cognitive processes such as learning and memory [7]–[10]. 
Beyond their role in human interaction, gestures are also 
critical for non-verbal communication between robots and 
humans. In human-robot interaction (HRI), robot gestures have 
been shown to improve the quality of interactions during 
narrations [11]. Additionally, robots use the support hand 
gesture to enhance perceptions of politeness and competence, 
particularly in service roles [12]. 

The existing literature offers substantial insights into how 
gestures facilitate communication. However, there is limited 
research on conveying object properties through robot ges-
tures, particularly via robot manipulation. This gap motivates 
our investigation into leveraging robot object manipulation to 
effectively communicate a broader range of object properties. 

B. Legibility 

Legibility, i.e., the intuitive understanding of robots’ in-
tentions, is crucial for coordinating joint action and positive 
perception [13]. Numerous models and methods have been 
developed to enhance the legibility of arm motions [14], 
[15], ranging from gestures [1], [2] to handovers [16], [17]. 
Additionally, a viewpoint-based model was proposed to gen-
erate legible motions [18], and a method for synthesizing 
legible manipulation motions was developed to effectively 
communicate a robot’s intent to human collaborators [19]. 
Legible motions have also been extensively applied in char-
acter animation, where animation techniques have been em-
ployed to express forethought, enhancing the legibility of robot 
behaviors and shaping human perceptions [20]. 

While prior research has primarily focused on enhancing 
legibility through direct robot motions to signal intent, our 
study shifts the focus to communicating object properties 
through robot object manipulation, distinguishing it from 
existing work. 

C. Communication of Object Properties 

Research has demonstrated that people can infer object 
properties by observing human behaviors. For instance, chil-
dren can accurately judge an object’s weight based on how 
others lift and transport it [21]. Similarly, individuals can 
deduce properties such as slipperiness and temperature from 
the way objects are handled [22]. 

This ability to infer object properties also applies to robot 
gestures and manipulations. Robots can use iconic gestures 
to convey the shape and size of objects [23]. Lifting be-
haviors have been employed to effectively communicate an 
object’s weight [22], while teleoperated robots can convey 
weight through visuo-proprioceptive cues, where the robot’s 
movements differ from those of the operator [24]. Further-
more, robots have been designed to express carefulness when 
handling full or empty cups, allowing observers to infer their 
contents [25]. 

While these studies focus on communicating specifc object 
properties through robot gestures or manipulations, the com-
munication of a broader range of object properties by robots 
remains underexplored. 

III. HOW DO PEOPLE COMMUNICATE PROPERTIES 
THROUGH OBJECT MANIPULATION? 

To investigate how people communicate object properties 
through manipulation, we selected specifc object properties 
for this study. Subsequently, we recruited actors to convey 
these properties by their hand behaviors. From their role-
plays, we extracted fundamental yet expressive hand behav-
iors, which we termed key elements. 

A. Selection of Object Properties 

To identify object properties commonly conveyed during 
interactions, we adopted two related sets of words and ap-
plied criteria for the selection. The selected properties were 
subsequently grouped based on their similarities. 

We began by reviewing the literature on cognitive science, 
taxonomy, and materials, adopting a widely recognized set 
of semantic features for conceptual representation of objects 
[26]. From this set, we extracted 220 unique adjectives, as 
adjectives are directly relevant for describing object properties. 
In addition, recognizing the critical role of tactile properties 
in object handovers, we incorporated a list of 262 adjectives 
specifcally designed to capture the nuances of tactile sensa-
tions [27]. Combining these two sets yielded a total of 342 
distinct adjectives. 

To select suitable object properties for this study, we estab-
lished the following four key criteria: 

• Commonly communicated in handover contexts. Know-
ing object properties in advance helps recipients avoid 
potential hazards, discomfort, or object damage during 
handovers. 

• Not directly audibly or visibly perceivable. Properties 
that are easily perceived through hearing or sight do not 
require communication. 

• Descriptive adjectives for non-living objects. While living 
beings possess properties, they are rarely manipulated 
during handovers. Therefore, we focused on non-living 
objects that are typically manipulable. 

• Associated with physical characteristics. Properties re-
lated to functionality or emotions are often subjective. 
Hence, we prioritized physical ones that can be directly 
perceived during object interactions. 

By applying these criteria, we identifed 39 object properties 
and clustered them into eight categories based on their similar 
characteristics: hot, cold, heavy, light, slippery, sticky, fragile, 
smelly, as shown in Tab. I. 

B. Observations of Human Hand Behaviors 

To investigate how people communicate object properties 
through hand behaviors during handover interactions, we 
recruited two Japanese actors (male, 61; female, 48). Both 
actors have over 10 years of professional acting experience. 
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TABLE I: Eight categories of object properties 

Hot Cold Heavy Light Slippery Sticky Fragile Smelly 

burning cold dense light damp gelatinous breakable musty 
hot cool heavy lightweight drenched gooey brittle smelly 

overheated freezing greasy goopy crumbly strong-smelling 
scalding frigid moist gummy delicate 

scorching frosty oily icky fragile 
warm icy slippery slimy 

wet sticky 
viscous 

Fig. 2: Examples of human key elements for communicating object properties. 

Neither had a background in robotics nor had they previously 
participated in robot-related experiments. 

1) Procedures: Upon arrival, the actors were provided with 
a brief overview of the study and asked to sign a consent 
form. To familiarize them with the robot’s capabilities, we 
demonstrated basic hand motions, including actions such as 
picking up an object from a table with one or both hands, 
switching an object between hands, and rotating an object. 

Afterward, we instructed the actors to interact with a generic 
box in a manner that would communicate the eight specifed 
object properties solely through hand behaviors. They were 
tasked with emulating the dual-armed robot within fve dif-
ferent assigned time limits, beginning before picking up the 
object and ending with moving it to the goal position. For each 
time limit, the actors performed two trials. After each trial, 
they were asked to provide brief explanations of the behaviors 
they performed. 

2) Identifcation of Human Key Elements: Key elements 
play a crucial role in helping people recognize object prop-
erties. To extract such elements from actors’ role-plays, the 
frst step was to defne a resolution. What constitutes a good 
resolution? We propose that it should meet two criteria: (1) 
it should be minimal, avoiding unnecessary complexity, and 
(2) it should enable people to associate actions with a set of 
candidate object properties. For instance, the action of briefy 
touching an object and quickly withdrawing the hands did not 
individually convey hot; however, their combination evoked 
an association with the property and was thus regarded as a 
key element. 

Applying this resolution, we analyzed video recordings of 
actors interacting with objects and identifed a set of key 
elements, integrating the actors’ explanations. These elements 

are listed in Tab. II, with examples corresponding to specifc 
object properties illustrated in Fig. 2. 

Finally, we divided these key elements into four sequential 
interaction stages: 

• Prepare: actions performed before an object is success-
fully grasped. 

• Grasp: actions performed during the successful grasping 
of an object. 

• Handle: actions performed while holding an object, but 
before moving it towards the intended goal position. 

• Transport: actions performed while moving an object 
towards the intended goal position. 

We found that key elements from the prepare and handle 
stages were generally repeatable, whereas those from the grasp 
and transport stages were not. For example, actors raised and 
lowered an object repeatedly to indicate light, but supported 
an object from the bottom to the goal position only once to 
indicate fragile. 

IV. PROPERTY-BASED PLANNER FOR COMMUNICATING 
OBJECT PROPERTIES 

This section proposes a property-based motion planner 
designed to enable robots to communicate object properties. 
To this end, we began by replicating human key elements on 
a robot. Subsequently, we conducted a user study to evaluate 
these robot hand motions (i.e., robot key elements). Finally, we 
designed and implemented the proposed planner on a robot. 

A. Architecture 

The architecture of the property-based motion planner is 
illustrated in Fig. 3. The proposed planner consists of two 
modules: the action sequence generator and the motion plan-
ner. The action sequence generator takes as input the object 
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TABLE II: Key elements for object properties 

Properties Key Elements Stages Descriptions Utility 

Default grasp from middle grasp grasp an object from the middle with both hands 0 
move transport move an object to the goal with both hands 0 

Hot 

touch and withdraw prepare briefy touch an object, then quickly withdraw both hands 1.85; 2.1; 1.45; 1.1 
fan prepare fan away the air around an object with both hands 0.6; 1.1; 0.7; 0.65 

shake prepare shake with two hands -0.1; 0.25; 0; 0.05 
wipe prepare wipe the sweat from the forehead with one hand -0.1; -0.15; -0.45; -0.7 

grasp from top grasp grasp an object from the top with both hands 0.3 
fan while grasp grasp fan away the air around an object with one hand while grasping it with the other -0.1 

shake while hold handle quickly shake with one hand while holding an object with the other 0; -0.2; -0.15; -0.4 
switch while move transport quickly switch an object between both hands while moving it to the goal 1.7 

Cold 

touch and withdraw with pause prepare touch an object for seconds, then withdraw both hands 0.7; 1.15; 0.6; 0.15 
rub prepare rub with two hands 0.75; 0.95; 0.5; 0.15 

grasp from top grasp grasp an object from the top with both hands 0.1 
rub while hold handle rub skins with one hand while holding an object with the other -0.1; -0.05; -0.1; -0.2 

breathe while hold handle breathe one hand while holding an object with the other 0.35; 0.45; 0.2; -0.15 

Heavy 

fail prepare slightly lift an object from the top with both hands, then immediately place it down 2.5; 2.55; 2.05; 1.95 
grasp from bottom grasp lift an object from the bottom by extending both hands 0.1 
jitter while move transport jitter with both hands while moving the object to the goal 0.4 

lift and lower while move transport lift and lower an object with both hands while moving it to the goal 2.2 

Light 

grasp with one hand grasp grasp an object with one hand 1.3 
raise and lower handle raise and lower an object over the head with one hand 2.3; 2.75; 2.45; 2.35 

rotate handle rotate an object with one hand 0.95; 0.9; 0.75; 0.6 
raise and lower while rotate handle raise and lower an object over the head while rotating it with one hand 1.85; 1.9; 1.5; 1.3 

Slippery 

slip prepare slip along an object’s surface with both hands 2.05; 2.55; 2.5; 2.3 
grasp from bottom grasp grasp an object from the bottom with both hands 0.1 

slip while hold handle slide along an object’s surface with one hand while holding it with the other 0.1; 0.2; 0; -0.2 
slip while move transport slide along an object’s surface with one hand while moving it to the goal 0.15 

support while move transport support an object from the bottom while moving it to the goal -0.35 

Sticky 

touch and withdraw with pause prepare touch an object for seconds, then withdraw both hands 0.1; 0; -0.15; -0.4 
open and close prepare quickly open and slowly close both palms 1.85; 2.15; 1.5; 1.05 
grasp from top grasp grasp an object from the top with both hands 0.15 

open and close while hold handle quickly open and slowly close one palm while holding an object with the other 2.4; 2.3; 1.65; 1.45 
open and grasp while hold handle quickly open and slowly grasp an object with one hand while holding it with the other 1.05; 1.2; 0.5; 0.25 
open and close while move transport quickly open and slowly close one palm while moving an object to the goal -0.3 

Fragile 

grasp from bottom grasp grasp an object from the bottom with both hands 0.35 
cradle handle slowly cradle an object to the chest with both hands 0.15; -0.4; -0.95; -0.95 

tap handle slightly tap an object with one hand while holding it with the other -1.5; -1.75; -1.8; -1.85 
support while move transport support an object from the bottom while moving it to the goal 2.4 

turn over while move transport turn an object over while moving it to the goal -1.5; -1.75; -1.8; -1.85 

Smelly 

fan prepare fan away the odor around an object with both hands -0.1; -0.1; -0.15; -0.2 
fan while cover prepare fan away the odor around an object with one hand while covering nose with the other 2.5; 2.8; 2.9; 2.75 
touch and sniff prepare touch an object with both hands, then sniff the hands -0.55; -0.7; -1.05; -1.1 

grasp with one hand grasp grasp an object with one hand 0.15 
cover while grasp grasp cover nose with one hand while grasping an object with the other 2.6 
fan while grasp grasp fan away the odor around an object while grasping it with the other -0.45 
fan while move transport fan away the odor around an object with one hand while moving it to the goal -0.4 

cover while move transport cover nose with one hand while moving an object to the goal 2.8 

Fig. 3: The Diagram of proposed planner. 

property, time ratio, initial pose of the object, and goal pose, 
along with the information about robot key elements, to 
generate a sequence of sub-goal poses. These sub-goal poses, 
combined with user-specifed constraints, are then processed 

by the motion planner module to produce human-like arm 
trajectories that effectively communicate the specifed object 
property. 

B. Robot Key Elements 
Human key elements are essential for conveying object 

properties. To evaluate their effectiveness, which we termed 
as utility, when implemented on robots, the frst step was to 
represent the corresponding robot key elements. We identifed 
three critical factors characterizing these robot key elements: 
sub-goal poses, execution time, and utility. 

We selected a dual-arm robot for this study as it can closely 
mimic human behaviors, facilitating a better understanding 
of the robot’s actions and intentions. Based on observations 
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(a) fan (b) rub (c) lift and lower (d) raise and lower 
while move 

(e)slip (f) open and close 
while move 

(g) support 
while move 

(h) cover 
while grasp 

Fig. 4: Robot key elements corresponding to the human key elements illustrated in Fig. 2. 

of human behaviors and the robot’s physical capabilities, 
we manually defned sub-goal poses corresponding to all 
the human key elements in Table II. These elements were 
then implemented on the robot, with examples of robot key 
elements shown in Fig. 4. 

C. Utility 

To quantify the utility of robot key elements, we conducted 
a user study. 

1) Procedures: We frst developed multiple robot demon-
strations showcasing all the human key elements in Tab. II, 
with the frequency of each key element varying depending on 
the stage. Specifcally, we created one robot demonstration for 
the key elements of the grasp and transport stages. For the 
prepare and handle stages, four robot demonstrations were 
created for each key element, with the frequency of each 
element ranging from one to four. All demonstrations involved 
grasping an object from a table and moving it to the goal 
position. 

Subsequently, we invited 20 participants (10f, 10m) to eval-
uate the utility of all the robot key elements for the correspond-
ing object properties. To minimize potential order effects, we 
employed a partially Latin square design to determine the 
order in which participants viewed and evaluated the videos. 
Participants rated each video on a scale from -3 to 3, where a 
score of 3 indicated that the key element helped to recognize 
the object property, while a score of -3 indicated that the key 
element hindered recognition of the object property. A score of 
0 represented neutrality, indicating that the key element neither 
helped nor hindered the recognition. The utility refects the 
effectiveness of key elements in conveying object properties, 
with higher utility indicating greater expressiveness. 

2) Results: We calculated the utility for all the robot 
key elements and their repetitions by averaging participants’ 
ratings, as shown in the last column of utility in Tab. II. 

The results revealed that the utility of repeatable key ele-
ments generally peaked at two repetitions when suffcient time 
was available. In contrast, the utility of unrepeatable ones was 
generally lower, except for those associated with the properties 
of light and smelly. Additionally, there were slight variations 
in utility on the grasping location (e.g., “grasp from bottom” 
versus “grasp from top”). 

D. Action Sequence Generator 

Our observations of role-plays revealed that the allotted time 
signifcantly infuences the variety and expressiveness of hand 

motions used to convey object properties. For instance, when 
given the shortest time, actors typically grasped the object with 
one hand and moved it to the goal position to represent light. 
However, with more time, they introduced additional actions 
(e.g., rotating an object) beyond these two basic actions. 

To reproduce these adaptive behaviors, we introduced the 
concept of time ratio. The time ratio refers to a multiple of 
the time required to grasp the middle of an object and move 
it from the table to the goal position. A time ratio of one 
corresponds to the duration of these two default actions. 

Building on this concept, we developed an action sequence 
generator. As shown in Fig. 3, this module takes two categories 
of inputs: (1) object property, time ratio, the object’s initial 
pose, and goal pose; and (2) information about robot key 
elements including utility, execution time, and sub-goal poses. 
It then generates an optimal sequence of sub-goal poses 
corresponding to the action sequence of robot key elements 
with the highest utility for the given time ratio. Specifcally, 
depth-frst search is frst employed to generate all possible 
action sequences with durations under the time limit dictated 
by the time ratio. Action sequence durations are calculated 
with pre-computed key element execution times obtained from 
tests on the robot. Finally, the action sequence with the highest 
utility is selected as optimal and mapped to the corresponding 
sequence of sub-goal poses associated with its key elements. 

E. Motion Planner 

Once the sequence of sub-goal poses is determined, the 
motion planner module computes the corresponding sequence 
of sub-goal arm trajectories. 

F. Implementation 

We implemented the property-based motion planner on a 
dual-arm robot system. 

1) Robot Hardware: We used a dual-arm robot named 
TIAGo++ 1 from PAL Robotics. The robot features a mobile 
base, a lifting torso, a head, and two arms. Both arms have 
7 degrees of freedom (DoF) ending in grippers, and the torso 
has a stroke of 35 cm so that the height of the robot can be 
adjusted between 110 and 145 cm. Its eyes are equipped with 
an RGB-D camera, and there are speakers inside the base. 

2) Trajectory Execution: Our robot system is built on 
the MoveIt framework 2, which automatically takes the arm 
trajectories as input and executes them on the physical robot. 

1https://pal-robotics.com/blog/tiago-bi-manual-robot-research/ 
2https://moveit.ros.org/ 
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Fig. 5: The planning results for light at different time ratios. 

G. Examples of Planning Results 

We evaluated the functionality of the proposed planner. 
As shown in Fig. 5, at the lowest time ratio (i.e., 1.0), the 
planner generates an action sequence consisting of two key 
elements, one from the grasp stage and the other from the 
transport stage, for light. As the time ratio increases, the 
planner incorporates additional key elements, such as “raise 
and lower” or “rotate,” leading to higher utility. The results 
indicate a positive relationship between utility and time ratio: 
as the time ratio increases, utility also improves. Similarly, 
Fig. 6 illustrates the planning results for hot. 

V. EVALUATION 

We designed and conducted an experiment to evaluate 
whether a robot could effectively communicate object prop-
erties by manipulating an object. 

A. Participants 

We recruited 20 participants through a part-time job re-
cruitment website, ranging in age from 18 to 68 years (M = 
36.6, SD = 15.48). Ten participants self-identifed as male and 
ten as female, with a balanced distribution across age groups. 
Each participant received 3000 JPY as compensation for their 
participation in the experiment. 

Fig. 6: The planning results for hot at different time ratios. 

B. Conditions 

The robot’s performance was estimated under fve con-
ditions. Specifcally, the participants needed to infer object 
properties under different time ratios (i.e., 1, 1.5, 2, 2.5, and 3). 
A within-subjects design was employed to allow participants 
to experience all conditions, as even in countries like Japan, 
where many robots are being deployed in public spaces, 
people remain unfamiliar with interpreting robots’ behaviors 
and intentions. To minimize order effects, a partially Latin 
square design was used to determine the order of time ratios 
and object properties within each ratio. 

C. Procedure 

Participants were welcomed into a large room where the 
robot was situated, and the experimenter administered the 
experiment overview and consent form. To familiarize partic-
ipants with the robot and to ease any potential discomfort, 
several demonstrations of the robot’s hand motions were 
shown. To prevent visual identifcation of the properties of 
objects, a generic box that concealed its property was selected 
as the experimental prop. 

Prior to the experiment, participants were informed that they 
could attribute any of the eight specifed object properties 
to each robot hand motion, ensuring that each interaction 
remained independent. Additionally, they were asked to choose 
the most effective property for each robot demonstration. The 
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TABLE III: The recognition results for object properties at 
different time ratios 

Hot Cold Heavy Light Slippery Sticky Fragile Smelly 

Fig. 7: Setup for experiments. 

Fig. 8: Relationship between recognition rate and time ratio. 

experimental setting is depicted in Fig. 7. Finally, we had semi-
structured interviews with the participants. The experiment 
was approved as ethical by the Institutional Review Board. 
The experiments and interviews were conducted in Japanese. 

VI. RESULTS 

A. Recognition Results

We evaluated the recognition accuracy for each object prop-
erty at various time ratios, as illustrated in Fig. 8. The results 
indicate a positive relationship between the recognition rate 
and the time ratio: as the time ratio increases, the recognition 
rate improves, reaching a peak of 0.93 at the time ratio of 3. 
This suggests that longer interaction time helps participants 
accurately identify object properties. 

To further explore participants’ responses to action se-
quences of key elements across different time ratios, confusion 
matrices were employed and presented in Tab. III, where 
each column corresponds to a specifc robot action sequence, 
while each row refects participant ratings. The confusion 
matrices reveal not only the correct recognition patterns but 
also the types of misclassifcations that occurred, showing how 
participants perceived and confused certain object properties. 

Notably, some object properties achieved high recognition 
rates early on, particularly those with short but highly ex-
pressive key elements, such as “cover nose” for smelly, “jitter 
while move” for heavy, “raise and lower” for light, and “slip” 
for slippery. In contrast, others such as hot and sticky required 

Time Ratio: 1 
Hot 1 2 0 0 0 2 0 0 
Cold 0 0 0 0 1 1 0 0 
Heavy 1 1 17 0 6 0 2 

11 12 0 20 9 14 12 
0 

Light 0 
Slippery 2 2 1 0 1 0 4 0 
Sticky 0 1 0 0 0 1 1 0 
Fragile 5 1 2 0 2 2 1 0 
Smelly 0 0 0 0 1 0 0 20 

Time Ratio: 1.5 
Hot 15 0 1 0 0 1 0 0 
Cold 1 1 1 0 0 3 0 0 
Heavy 0 3 16 0 0 0 2 0 
Light 2 14 0 20 2 16 5 0 
Slippery 1 1 1 0 18 0 0 0 
Sticky 1 1 0 0 0 0 5 0 
Fragile 0 0 1 0 0 0 7 0 
Smelly 0 0 0 0 0 0 1 20 

Time Ratio: 2 
Hot 13 0 0 0 0 14 2 0 
Cold 2 11 1 0 0 2 2 0 
Heavy 0 2 19 0 0 0 0 0 
Light 0 2 0 20 0 0 2 0 
Slippery 2 2 0 0 20 0 1 0 
Sticky 1 2 0 0 0 2 0 0 
Fragile 2 1 0 0 0 2 13 0 
Smelly 0 0 0 0 0 0 0 20 

Time Ratio: 2.5 
Hot 14 3 0 0 0 7 0 0 
Cold 3 12 0 0 1 4 1 0 
Heavy 0 0 20 0 0 0 0 0 
Light 0 0 0 20 0 1 0 0 
Slippery 0 0 0 0 19 1 1 0 
Sticky 3 5 0 0 0 7 0 0 
Fragile 0 0 0 0 0 0 18 0 
Smelly 0 0 0 0 0 0 0 20 

Time Ratio: 3 
Hot 19 1 0 0 1 1 0 0 
Cold 0 15 0 0 0 2 0 0 
Heavy 0 0 20 0 0 0 0 0 
Light 0 0 0 20 0 0 1 0 
Slippery 0 0 0 0 19 0 1 0 
Sticky 1 4 0 0 0 17 0 0 
Fragile 0 0 0 0 0 0 18 0 
Smelly 0 0 0 0 0 0 0 20 

more key elements presented over longer time ratios to reach 
similar levels of accuracy. 

B. Interview Results

When asked about the ease of inferring properties from the
robot manipulating objects, all participants found it straight-
forward to recognize smelly, heavy, light, and slippery, with 
smelly being the easiest to identify. Sixteen participants re-
ported that it was relatively easier to infer fragile, as the 
support hand behaviors conveyed a sense of cautious handling, 
which aligns with the view in [12]. 

Seven participants mentioned that while they could infer 
hot from the element of “touch and withdraw”, they still 
found it challenging to distinguish between hot and cold. Three 
participants suggested that rubbing hands could indicate either 
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hot or cold. Similarly, two participants linked the element of 
“rub” with sticky, as it resembled behaviors used to remove 
stickiness. Furthermore, four participants associated the ele-
ment of “open and close” either with both hot and cold, as it 
mimicked behaviors for cooling or warming hands. However, 
they noted that the element of “open and close while hold” 
was highly expressive and even humorous, as it simulated the 
robot’s hands being stuck together, helping them confrm their 
judgments. 

Interestingly, two participants expressed that adding more 
hand behaviors did not necessarily improve the clarity of 
conveyed properties. For example, they noted that additional 
behaviors, such as the element of “rotate” for light, caused 
confusion and made them hesitant in their judgments. 

VII. DISCUSSION 

A. Generalizability 

Humans naturally use a combination of cues (e.g., facial 
expressions, body movements, posture) to communicate in-
formation. However, not all robots are equipped to replicate 
such multimodal communication. For example, robots without 
legs might move on wheels, some may lack arms, and others 
may have only a head or a simple manipulator. To address 
this variability, we assume robots using our proposed tech-
nique must possess human-like qualities, focusing on hand 
motions as a primary means of communication. This minimal 
assumption ensures fexibility, making the approach applicable 
across different robot platforms. Although combining hand 
motions with other modalities (e.g., head or body movements) 
could enhance communication (e.g., a robot rotating its head or 
tilting its body while presenting a smelly object), our approach 
deliberately avoids multimodal dependencies to maximize 
adaptability. 

To enhance generalizability across cultures, our study ben-
efts from distinguishing between motor-control motions and 
communicative motions. Motor-control motions are universal, 
arising from innate responses to physical interaction (e.g., 
adjusting lifting speed for weight or withdrawing hand(s) 
quickly from a hot surface). In contrast, communicative mo-
tions are socially motivated and explicitly designed to convey 
information (e.g., rotating an object to indicate lightness or 
supporting an object to suggest fragility). These culturally 
infuenced hand motions vary in interpretation, depending on 
shared conventions and experiences. By highlighting these 
distinctions, robots can be designed to interact naturally with 
diverse user groups, ensuring effective communication across 
different cultural contexts. 

B. Optimization for System Performance 

Enhancing system performance involves addressing multiple 
aspects, including adaptability to time-critical scenarios, per-
sonalization, and distinguishing similar key elements across 
object properties. 

First, in time-critical scenarios, our system can be further 
improved by reducing the resolution of conveyed properties. 
For instance, similar properties such as hot and cold could 

be merged into a generalized cautionary category. Although 
users may not differentiate the exact property, they will still 
recognize the need for careful handling. This approach pri-
oritizes safety and effciency in environments where detailed 
communication is impractical. 

Second, personalization can enhance performance by ac-
counting for variability in individual and cultural preferences. 
Currently, utility metrics are derived from aggregated par-
ticipant ratings, which may overlook nuanced differences. 
Incorporating personalization methods, such as tailoring utility 
scores for users with similar preferences or cultural contexts, 
could signifcantly improve effectiveness. Additionally, the 
system can beneft from co-designing gestures with end-users 
in specifc environments, such as noisy or silent settings, 
to identify a set of hand motions that are intuitive, easily 
understood, and broadly applicable across diverse contexts. 

Finally, distinguishing similar key elements across object 
properties is crucial for reducing ambiguity. Some properties, 
such as cold and sticky, share overlapping elements like “touch 
and withdraw with pause,” while hot features a slight variation 
of “touch and withdraw.” To address this challenge, the system 
can prioritize emphasizing unique key elements specifc to 
each property, making the motions more distinct and easier 
to interpret. 

C. Limitations 
While our system demonstrates its effectiveness in generat-

ing expressive and property-specifc hand motions, it presents 
a scalability limitation, particularly when integrating new 
object properties. Each new property requires the identifcation 
and extraction of key elements from actors’ role-plays, the 
development of robot key elements, and the evaluation of 
utility for these elements. Although this approach ensures the 
generation of expressive and property-specifc actions, it is 
inherently time-intensive and resource-demanding. 

Despite this challenge, we believe our system design pro-
vides a strong foundation for designing robot hand motions 
that effectively communicate object properties, paving the way 
for further advancements in this area. 

VIII. CONCLUSION 

In this paper, we investigated how robots communicate 
properties through object manipulation. We frst identifed 
eight categories of object properties and extracted a set of key 
elements from role-plays. These elements were implemented 
on a dual-arm robot and evaluated for their utility based on 
participant feedback. To effectively convey object properties 
within time constraints, we developed a property-based motion 
planner that optimally balances utility and time ratio. Our 
within-subjects study with 20 participants demonstrated that 
individuals could accurately interpret these properties through 
robot object manipulation. 
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