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Abstract—When verbal communication is limited, robots pass-
ing objects to humans without providing additional information
(e.g., temperature, weight) can result in potential poor handovers
and disappointing user experiences. To address this issue, we
introduced a method for conveying object properties through
robot manipulation. We began by proposing four criteria for
selecting properties from two widely recognized sets: one focusing
on the semantic features of objects and the other on tactile
sensations. These properties were clustered into eight physical
categories: hot, cold, heavy, light, slippery, sticky, fragile, and
smelly. Professional actors were then recruited to demonstrate
these properties through object manipulation, from which we
extracted a set of fundamental yet expressive manipulation behav-
iors, i.e., key elements, that help people recognize these properties.
These elements were implemented on a dual-arm robot, followed
by an evaluation of their utility through participant feedback. To
generate time-constrained sequences of elements, we developed
a property-based motion planner that balances time and utility
in conveying object properties. Results from a within-subjects
study involving 20 participants showed that individuals could
accurately interpret the properties conveyed by robot object ma-
nipulation, validating the effectiveness of the proposed approach.

Index Terms—non-verbal communication, object properties,
robot object manipulation, property-based motion planner

I. INTRODUCTION

Effective non-verbal communication between robots and
humans is crucial in dynamic and unpredictable environments.
Imagine a scenario in a noisy restaurant kitchen where a
service robot needs to hand over a freshly prepared dish to a
waiter. The plate is extremely hot, and while a verbal warning
could suffice in a quiet setting, the loud clamor of the kitchen
makes it difficult for the waiter to hear. Furthermore, the heat
of the plate cannot be reliably perceived by simply observing
its appearance. In such situations, a robot capable of conveying
hot through intuitive hand motions—such as quickly fanning
the air around the object (Fig. 1 (a)), rapidly shaking the hand
(Fig. 1 (b)), or frequently switching the object between hands
(Fig. 1 (c))—could effectively communicate the potential
danger without relying on verbal cues.

Similarly, imagine a robot assisting with the curation and
transport of delicate artifacts in a museum. If the robot encoun-
ters a biological specimen that emits a strong and unpleasant
odor, it needs to alert the staff discreetly as speaking aloud
is not appropriate in such a quiet and respectful environment.
In this case, covering its nose with one hand while carefully
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(c) switch object

(d) cover nose

Fig. 1: Communication of object properties during handovers.

holding the artifact with the other (Fig. 1 (d)) allows the
robot to signal smelly to the nearby staff without disturbing
visitors. These examples highlight the importance of non-
verbal communication of object properties, especially when
verbal communication is limited.

Extensive research has focused on using robot gestures
for non-verbal communication, covering intentions [1], [2],
emotions [3], [4], and personality [5], [6]. However, the
communication of object properties, particularly through robot
manipulation, remains significantly underexplored. To bridge
this gap, our study makes three main contributions. First, we
identify eight categories of object properties that are com-
monly communicated during handover interactions. Second,
we propose a property-based motion planner capable of gen-
erating optimal hand action sequences to convey these prop-
erties. Third, we demonstrate the feasibility of our approach
through human studies, showing that people can accurately
infer object properties from robot object manipulation.
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II. RELATED WORK
A. Gestures for Communications

Gestures play a crucial role in human communication
by enhancing engagement, clarifying speech, and supporting
cognitive processes such as learning and memory [7]-[10].
Beyond their role in human interaction, gestures are also
critical for non-verbal communication between robots and
humans. In human-robot interaction (HRI), robot gestures have
been shown to improve the quality of interactions during
narrations [11]. Additionally, robots use the support hand
gesture to enhance perceptions of politeness and competence,
particularly in service roles [12].

The existing literature offers substantial insights into how
gestures facilitate communication. However, there is limited
research on conveying object properties through robot ges-
tures, particularly via robot manipulation. This gap motivates
our investigation into leveraging robot object manipulation to
effectively communicate a broader range of object properties.
B. Legibility

Legibility, i.e., the intuitive understanding of robots’ in-
tentions, is crucial for coordinating joint action and positive
perception [13]. Numerous models and methods have been
developed to enhance the legibility of arm motions [14],
[15], ranging from gestures [1], [2] to handovers [16], [17].
Additionally, a viewpoint-based model was proposed to gen-
erate legible motions [18], and a method for synthesizing
legible manipulation motions was developed to effectively
communicate a robot’s intent to human collaborators [19].
Legible motions have also been extensively applied in char-
acter animation, where animation techniques have been em-
ployed to express forethought, enhancing the legibility of robot
behaviors and shaping human perceptions [20].

While prior research has primarily focused on enhancing
legibility through direct robot motions to signal intent, our
study shifts the focus to communicating object properties
through robot object manipulation, distinguishing it from
existing work.

C. Communication of Object Properties

Research has demonstrated that people can infer object
properties by observing human behaviors. For instance, chil-
dren can accurately judge an object’s weight based on how
others lift and transport it [21]. Similarly, individuals can
deduce properties such as slipperiness and temperature from
the way objects are handled [22].

This ability to infer object properties also applies to robot
gestures and manipulations. Robots can use iconic gestures
to convey the shape and size of objects [23]. Lifting be-
haviors have been employed to effectively communicate an
object’s weight [22], while teleoperated robots can convey
weight through visuo-proprioceptive cues, where the robot’s
movements differ from those of the operator [24]. Further-
more, robots have been designed to express carefulness when
handling full or empty cups, allowing observers to infer their
contents [25].
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While these studies focus on communicating specific object
properties through robot gestures or manipulations, the com-
munication of a broader range of object properties by robots
remains underexplored.

III. How DO PEOPLE COMMUNICATE PROPERTIES
THROUGH OBJECT MANIPULATION?

To investigate how people communicate object properties
through manipulation, we selected specific object properties
for this study. Subsequently, we recruited actors to convey
these properties by their hand behaviors. From their role-
plays, we extracted fundamental yet expressive hand behav-
iors, which we termed key elements.

A. Selection of Object Properties

To identify object properties commonly conveyed during
interactions, we adopted two related sets of words and ap-
plied criteria for the selection. The selected properties were
subsequently grouped based on their similarities.

We began by reviewing the literature on cognitive science,
taxonomy, and materials, adopting a widely recognized set
of semantic features for conceptual representation of objects
[26]. From this set, we extracted 220 unique adjectives, as
adjectives are directly relevant for describing object properties.
In addition, recognizing the critical role of tactile properties
in object handovers, we incorporated a list of 262 adjectives
specifically designed to capture the nuances of tactile sensa-
tions [27]. Combining these two sets yielded a total of 342
distinct adjectives.

To select suitable object properties for this study, we estab-
lished the following four key criteria:

o Commonly communicated in handover contexts. Know-
ing object properties in advance helps recipients avoid
potential hazards, discomfort, or object damage during
handovers.

e Not directly audibly or visibly perceivable. Properties
that are easily perceived through hearing or sight do not
require communication.

e Descriptive adjectives for non-living objects. While living
beings possess properties, they are rarely manipulated
during handovers. Therefore, we focused on non-living
objects that are typically manipulable.

e Associated with physical characteristics. Properties re-
lated to functionality or emotions are often subjective.
Hence, we prioritized physical ones that can be directly
perceived during object interactions.

By applying these criteria, we identified 39 object properties
and clustered them into eight categories based on their similar
characteristics: hot, cold, heavy, light, slippery, sticky, fragile,
smelly, as shown in Tab. I.

B. Observations of Human Hand Behaviors

To investigate how people communicate object properties
through hand behaviors during handover interactions, we
recruited two Japanese actors (male, 61; female, 48). Both
actors have over 10 years of professional acting experience.
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TABLE I: Eight categories of object properties

Hot Cold Heavy Light Slippery Sticky Fragile Smelly
burning cold dense light damp gelatinous breakable musty
hot cool heavy lightweight drenched gooey brittle smelly
overheated freezing greasy goopy crumbly strong-smelling
scalding frigid moist gummy delicate
scorching frosty oily icky fragile
warm icy slippery slimy
wet sticky
viscous
Heavy ‘ Light/ £ W Slippery Sticky Fragile Smelly |

(c) lift and lower

(a) fan
while move

(b) rub

(d) raise and lower

(g) support
while move

(h) cover
while grasp

(f) open and close
while move

(e) slip

Fig. 2: Examples of human key elements for communicating object properties.

Neither had a background in robotics nor had they previously
participated in robot-related experiments.

1) Procedures: Upon arrival, the actors were provided with
a brief overview of the study and asked to sign a consent
form. To familiarize them with the robot’s capabilities, we
demonstrated basic hand motions, including actions such as
picking up an object from a table with one or both hands,
switching an object between hands, and rotating an object.

Afterward, we instructed the actors to interact with a generic
box in a manner that would communicate the eight specified
object properties solely through hand behaviors. They were
tasked with emulating the dual-armed robot within five dif-
ferent assigned time limits, beginning before picking up the
object and ending with moving it to the goal position. For each
time limit, the actors performed two trials. After each trial,
they were asked to provide brief explanations of the behaviors
they performed.

2) Identification of Human Key Elements: Key elements
play a crucial role in helping people recognize object prop-
erties. To extract such elements from actors’ role-plays, the
first step was to define a resolution. What constitutes a good
resolution? We propose that it should meet two criteria: (1)
it should be minimal, avoiding unnecessary complexity, and
(2) it should enable people to associate actions with a set of
candidate object properties. For instance, the action of briefly
touching an object and quickly withdrawing the hands did not
individually convey hot; however, their combination evoked
an association with the property and was thus regarded as a
key element.

Applying this resolution, we analyzed video recordings of
actors interacting with objects and identified a set of key
elements, integrating the actors’ explanations. These elements

are listed in Tab. II, with examples corresponding to specific
object properties illustrated in Fig. 2.

Finally, we divided these key elements into four sequential
interaction stages:

e Prepare: actions performed before an object is success-

fully grasped.

e Grasp: actions performed during the successful grasping

of an object.

e Handle: actions performed while holding an object, but

before moving it towards the intended goal position.

e Transport: actions performed while moving an object

towards the intended goal position.

We found that key elements from the prepare and handle
stages were generally repeatable, whereas those from the grasp
and transport stages were not. For example, actors raised and
lowered an object repeatedly to indicate light, but supported
an object from the bottom to the goal position only once to
indicate fragile.

IV. PROPERTY-BASED PLANNER FOR COMMUNICATING
OBJECT PROPERTIES

This section proposes a property-based motion planner
designed to enable robots to communicate object properties.
To this end, we began by replicating human key elements on
a robot. Subsequently, we conducted a user study to evaluate
these robot hand motions (i.e., robot key elements). Finally, we
designed and implemented the proposed planner on a robot.

A. Architecture

The architecture of the property-based motion planner is
illustrated in Fig. 3. The proposed planner consists of two
modules: the action sequence generator and the motion plan-
ner. The action sequence generator takes as input the object
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TABLE II: Key elements for object properties
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Properties Key Elements Stages Descriptions Utility
Default grasp from middle grasp grasp an object from the middle with both hands 0
move transport move an object to the goal with both hands 0
touch and withdraw prepare briefly touch an object, then quickly withdraw both hands 1.85; 2.1; 1.45; 1.1
fan prepare fan away the air around an object with both hands 0.6; 1.1; 0.7; 0.65
shake prepare shake with two hands -0.1; 0.25; 0; 0.05
Hot wipe prepare wipe the sweat from the forehead with one hand -0.1; -0.15; -0.45; -0.7
grasp from top grasp grasp an object from the top with both hands 0.3
fan while grasp grasp fan away the air around an object with one hand while grasping it with the other -0.1
shake while hold handle quickly shake with one hand while holding an object with the other 0; -0.2; -0.15; -0.4
switch while move transport quickly switch an object between both hands while moving it to the goal 1.7
touch and withdraw with pause prepare touch an object for seconds, then withdraw both hands 0.7; 1.15; 0.6; 0.15
rub prepare rub with two hands 0.75; 0.95; 0.5; 0.15
Cold grasp from top grasp grasp an object from the top with both hands 0.1
rub while hold handle rub skins with one hand while holding an object with the other -0.1; -0.05; -0.1; -0.2
breathe while hold handle breathe one hand while holding an object with the other 0.35; 0.45; 0.2; -0.15
fail prepare slightly lift an object from the top with both hands, then immediately place it down 2.5; 2.55; 2.05; 1.95
Heavy grasp from bottom grasp lift an object from the bottom by extending both hands 0.1
jitter while move transport jitter with both hands while moving the object to the goal 0.4
lift and lower while move transport lift and lower an object with both hands while moving it to the goal 2.2
grasp with one hand grasp grasp an object with one hand 1.3
Light raise and lower handle raise and lower an object over the head with one hand 2.3;2.75;2.45; 2.35
rotate handle rotate an object with one hand 0.95; 0.9; 0.75; 0.6
raise and lower while rotate handle raise and lower an object over the head while rotating it with one hand 1.85;1.9; 1.5; 1.3
slip prepare slip along an object’s surface with both hands 2.05; 2.55; 2.5, 2.3
grasp from bottom grasp grasp an object from the bottom with both hands 0.1
Slippery slip while hold handle slide along an object’s surface with one hand while holding it with the other 0.1; 0.2; 0; -0.2
slip while move transport slide along an object’s surface with one hand while moving it to the goal 0.15
support while move transport support an object from the bottom while moving it to the goal -0.35
touch and withdraw with pause prepare touch an object for seconds, then withdraw both hands 0.1; 0; -0.15; -0.4
open and close prepare quickly open and slowly close both palms 1.85; 2.15; 1.5; 1.05
Sticky grasp from top grasp grasp an object from the top with both hands 0.15
open and close while hold handle quickly open and slowly close one palm while holding an object with the other 2.4;2.3; 1.65; 1.45
open and grasp while hold handle quickly open and slowly grasp an object with one hand while holding it with the other 1.05; 1.2; 0.5; 0.25
open and close while move transport quickly open and slowly close one palm while moving an object to the goal -0.3
grasp from bottom grasp grasp an object from the bottom with both hands 0.35
cradle handle slowly cradle an object to the chest with both hands 0.15; -0.4; -0.95; -0.95
Fragile tap handle slightly tap an object with one hand while holding it with the other -1.5; -1.75; -1.8; -1.85
support while move transport support an object from the bottom while moving it to the goal 24
turn over while move transport turn an object over while moving it to the goal -1.5; -1.75; -1.8; -1.85
fan prepare fan away the odor around an object with both hands -0.1; -0.1; -0.15; -0.2
fan while cover prepare fan away the odor around an object with one hand while covering nose with the other 2.5;2.8;2.9;2.75
touch and sniff prepare touch an object with both hands, then sniff the hands -0.55; -0.7; -1.05; -1.1
Smelly grasp with one hand grasp grasp an object with one hand 0.15
cover while grasp grasp cover nose with one hand while grasping an object with the other 2.6
fan while grasp grasp fan away the odor around an object while grasping it with the other -0.45
fan while move transport fan away the odor around an object with one hand while moving it to the goal -0.4
cover while move transport cover nose with one hand while moving an object to the goal 2.8
: ] | by the motion planner module to produce human-like arm
! Robot User-specified ' . . . . . .
Obiect Pronerty | Key Elements Constraints : trajectories that effectively communicate the specified object
) perty
: | property.
m: Sequence of ! Arm
‘Object Pose 1 Action Seq Sub-goal Poses  Motion | Trajectories B - Rohot Key Elements
EEE— Generator Planner |
1 |

Goal Pose_—"
[

Fig. 3: The Diagram of proposed planner.

property, time ratio, initial pose of the object, and goal pose,
along with the information about robot key elements, to
generate a sequence of sub-goal poses. These sub-goal poses,
combined with user-specified constraints, are then processed

Human key elements are essential for conveying object
properties. To evaluate their effectiveness, which we termed
as utility, when implemented on robots, the first step was to
represent the corresponding robot key elements. We identified
three critical factors characterizing these robot key elements:
sub-goal poses, execution time, and utility.

We selected a dual-arm robot for this study as it can closely
mimic human behaviors, facilitating a better understanding
of the robot’s actions and intentions. Based on observations
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Fig. 4: Robot key elements corresponding to the human key elements illustrated in Fig. 2.

of human behaviors and the robot’s physical capabilities,
we manually defined sub-goal poses corresponding to all
the human key elements in Table II. These elements were
then implemented on the robot, with examples of robot key
elements shown in Fig. 4.

C. Utility

To quantify the utility of robot key elements, we conducted
a user study.

1) Procedures: We first developed multiple robot demon-
strations showcasing all the human key elements in Tab. II,
with the frequency of each key element varying depending on
the stage. Specifically, we created one robot demonstration for
the key elements of the grasp and transport stages. For the
prepare and handle stages, four robot demonstrations were
created for each key element, with the frequency of each
element ranging from one to four. All demonstrations involved
grasping an object from a table and moving it to the goal
position.

Subsequently, we invited 20 participants (10f, 10m) to eval-
uate the utility of all the robot key elements for the correspond-
ing object properties. To minimize potential order effects, we
employed a partially Latin square design to determine the
order in which participants viewed and evaluated the videos.
Participants rated each video on a scale from -3 to 3, where a
score of 3 indicated that the key element helped to recognize
the object property, while a score of -3 indicated that the key
element hindered recognition of the object property. A score of
0 represented neutrality, indicating that the key element neither
helped nor hindered the recognition. The utility reflects the
effectiveness of key elements in conveying object properties,
with higher utility indicating greater expressiveness.

2) Results: We calculated the utility for all the robot
key elements and their repetitions by averaging participants’
ratings, as shown in the last column of utility in Tab. II.

The results revealed that the utility of repeatable key ele-
ments generally peaked at two repetitions when sufficient time
was available. In contrast, the utility of unrepeatable ones was
generally lower, except for those associated with the properties
of light and smelly. Additionally, there were slight variations
in utility on the grasping location (e.g., “grasp from bottom”
versus “grasp from top”).

D. Action Sequence Generator

Our observations of role-plays revealed that the allotted time
significantly influences the variety and expressiveness of hand

motions used to convey object properties. For instance, when
given the shortest time, actors typically grasped the object with
one hand and moved it to the goal position to represent light.
However, with more time, they introduced additional actions
(e.g., rotating an object) beyond these two basic actions.

To reproduce these adaptive behaviors, we introduced the
concept of time ratio. The time ratio refers to a multiple of
the time required to grasp the middle of an object and move
it from the table to the goal position. A time ratio of one
corresponds to the duration of these two default actions.

Building on this concept, we developed an action sequence
generator. As shown in Fig. 3, this module takes two categories
of inputs: (1) object property, time ratio, the object’s initial
pose, and goal pose; and (2) information about robot key
elements including utility, execution time, and sub-goal poses.
It then generates an optimal sequence of sub-goal poses
corresponding to the action sequence of robot key elements
with the highest utility for the given time ratio. Specifically,
depth-first search is first employed to generate all possible
action sequences with durations under the time limit dictated
by the time ratio. Action sequence durations are calculated
with pre-computed key element execution times obtained from
tests on the robot. Finally, the action sequence with the highest
utility is selected as optimal and mapped to the corresponding
sequence of sub-goal poses associated with its key elements.

E. Motion Planner

Once the sequence of sub-goal poses is determined, the
motion planner module computes the corresponding sequence
of sub-goal arm trajectories.

F. Implementation

We implemented the property-based motion planner on a
dual-arm robot system.

1) Robot Hardware: We used a dual-arm robot named
TIAGo++ ! from PAL Robotics. The robot features a mobile
base, a lifting torso, a head, and two arms. Both arms have
7 degrees of freedom (DoF) ending in grippers, and the torso
has a stroke of 35 cm so that the height of the robot can be
adjusted between 110 and 145 cm. Its eyes are equipped with
an RGB-D camera, and there are speakers inside the base.

2) Trajectory Execution: Our robot system is built on
the Movelt framework 2, which automatically takes the arm
trajectories as input and executes them on the physical robot.

Thttps://pal-robotics.com/blog/tiago-bi-manual-robot-research/
Zhttps://moveit.ros.org/
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grasp with one hand move
(a) time ratio: 1, utility: 1.3

grasp with one hand raise and lower
(b) time ratio: 1.5, utility: 3.6

grasp with one hand raise and lower raise and lower

(c) time ratio: 2, utility: 4.05

grasp with one hand
(d) time ratio: 2.5, utility: 5.9

raise and lower raise and lower  raise and lower while rotate move

grasp with one hand raise and lower raise and lower while rotate

(e) time ratio: 3, utility: 6.4

rotate

move

Fig. 5: The planning results for light at different time ratios.

G. Examples of Planning Results

We evaluated the functionality of the proposed planner.
As shown in Fig. 5, at the lowest time ratio (i.e., 1.0), the
planner generates an action sequence consisting of two key
elements, one from the grasp stage and the other from the
transport stage, for light. As the time ratio increases, the
planner incorporates additional key elements, such as “raise
and lower” or “rotate,” leading to higher utility. The results
indicate a positive relationship between utility and time ratio:
as the time ratio increases, utility also improves. Similarly,
Fig. 6 illustrates the planning results for hot.

V. EVALUATION

We designed and conducted an experiment to evaluate
whether a robot could effectively communicate object prop-
erties by manipulating an object.

A. Participants

We recruited 20 participants through a part-time job re-
cruitment website, ranging in age from 18 to 68 years (M =
36.6, SD = 15.48). Ten participants self-identified as male and
ten as female, with a balanced distribution across age groups.
Each participant received 3000 JPY as compensation for their
participation in the experiment.
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grasp from top move
(a) time ratio: 1, utility: 0.3

touch and withdraw grasp from top
(b) time ratio: 1.5, utility: 2.15

move

touch and withdraw fan
(c) time ratio: 2, utility: 2.75

touch and withdraw  touch and withdraw switch while move

(d) time ratio: 2.5, utility: 4.1

grasp from top

touch and withdraw fan switch while move

(e) time ratio: 3, utility: 4.7

touch and withdraw

grasp from top

Fig. 6: The planning results for hot at different time ratios.

B. Conditions

The robot’s performance was estimated under five con-
ditions. Specifically, the participants needed to infer object
properties under different time ratios (i.e., 1, 1.5, 2, 2.5, and 3).
A within-subjects design was employed to allow participants
to experience all conditions, as even in countries like Japan,
where many robots are being deployed in public spaces,
people remain unfamiliar with interpreting robots’ behaviors
and intentions. To minimize order effects, a partially Latin
square design was used to determine the order of time ratios
and object properties within each ratio.

C. Procedure

Participants were welcomed into a large room where the
robot was situated, and the experimenter administered the
experiment overview and consent form. To familiarize partic-
ipants with the robot and to ease any potential discomfort,
several demonstrations of the robot’s hand motions were
shown. To prevent visual identification of the properties of
objects, a generic box that concealed its property was selected
as the experimental prop.

Prior to the experiment, participants were informed that they
could attribute any of the eight specified object properties
to each robot hand motion, ensuring that each interaction
remained independent. Additionally, they were asked to choose
the most effective property for each robot demonstration. The
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Fig. 7: Setup for experiments.
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Fig. 8: Relationship between recognition rate and time ratio.

experimental setting is depicted in Fig. 7. Finally, we had semi-
structured interviews with the participants. The experiment
was approved as ethical by the Institutional Review Board.
The experiments and interviews were conducted in Japanese.

VI. RESULTS

A. Recognition Results

We evaluated the recognition accuracy for each object prop-
erty at various time ratios, as illustrated in Fig. 8. The results
indicate a positive relationship between the recognition rate
and the time ratio: as the time ratio increases, the recognition
rate improves, reaching a peak of 0.93 at the time ratio of 3.
This suggests that longer interaction time helps participants
accurately identify object properties.

To further explore participants’ responses to action se-
quences of key elements across different time ratios, confusion
matrices were employed and presented in Tab. III, where
each column corresponds to a specific robot action sequence,
while each row reflects participant ratings. The confusion
matrices reveal not only the correct recognition patterns but
also the types of misclassifications that occurred, showing how
participants perceived and confused certain object properties.

Notably, some object properties achieved high recognition
rates early on, particularly those with short but highly ex-
pressive key elements, such as “cover nose” for smelly, “jitter
while move” for heavy, “raise and lower” for light, and “slip”
for slippery. In contrast, others such as hot and sticky required

HRI 2025, March 4-6, 2025, Melbourne, Australia

TABLE III: The recognition results for object properties at
different time ratios

Hot Cold  Heavy Light Slippery Sticky Fragile Smelly
Time Ratio: 1
Hot 1 2 0 0 0 2 0 0
Cold 0 0 0 0 1 1 0 0
Heavy 1 1 0 6 0 2 0
Light 11 12 0 9 [14 1 0
Slippery 2 2 1 0 1 0 4 0
Sticky 0 1 0 0 0 1 1 0
Fragile 5 1 2 0 2 2 1 0
Smelly 0 0 0 0 1 0 o EN
Time Ratio: 1.5
Ho 5 o 1 0 0 1 0 0
Cold 1 1 1 0 0 3 0 0
Heavy 0 3 0 0 0 2 0
Light 2 0 2 5 0
Slippery 1 1 1 0 0 0 0
Sticky 1 1 0 0 0 0 5 0
Fragile 0 0 1 0 0 7 0
Smelly 0 0 0 0 0 0 1 B
Time Ratio: 2
Hot mEm o 0 0 o Em 0
Cold 2 11 1 0 0 2 2 0
Heavy 0 2 0 0 0 0 0
Light 0 2 0 0 0 2 0
Slippery 2 2 0 0 0 1 0
Sticky 1 2 0 0 0 2 0 0
Fragile 2 1 0 0 0 2 0
Smelly 0 0 0 0 0 0 *—
Time Ratio: 2.5
Hot [N 3 0 0 0 7 0 0
Cold 3 12 0 0 1 4 1 0
Heavy 0 0 0 0 0 0 0
Light 0 0 0 0 1 0 0
Slippery 0 0 0 0 1 1 0
Sticky 3 5 0 0 0 7 0 0
Fragile 0 0 0 0 0 0 0
Smelly 0 0 0 0 0 0 *—
Hot 1 0 1 0 0
Cold 0 0 2 0 0
Heavy 0 0 0 0 0
Light 0 0 0 0 1 0
Slippery 0 0 0 0 1 0
Sticky 1 4 0 0 0
Fragile 0 0 0 0 0
Smelly 0 0 0 0 0

more key elements presented over longer time ratios to reach
similar levels of accuracy.

B. Interview Results

When asked about the ease of inferring properties from the
robot manipulating objects, all participants found it straight-
forward to recognize smelly, heavy, light, and slippery, with
smelly being the easiest to identify. Sixteen participants re-
ported that it was relatively easier to infer fragile, as the
support hand behaviors conveyed a sense of cautious handling,
which aligns with the view in [12].

Seven participants mentioned that while they could infer
hot from the element of “touch and withdraw”, they still
found it challenging to distinguish between hot and cold. Three
participants suggested that rubbing hands could indicate either
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hot or cold. Similarly, two participants linked the element of
“rub” with sticky, as it resembled behaviors used to remove
stickiness. Furthermore, four participants associated the ele-
ment of “open and close” either with both hot and cold, as it
mimicked behaviors for cooling or warming hands. However,
they noted that the element of “open and close while hold”
was highly expressive and even humorous, as it simulated the
robot’s hands being stuck together, helping them confirm their
judgments.

Interestingly, two participants expressed that adding more
hand behaviors did not necessarily improve the clarity of
conveyed properties. For example, they noted that additional
behaviors, such as the element of “rotate” for light, caused
confusion and made them hesitant in their judgments.

VII. DISCUSSION
A. Generalizability

Humans naturally use a combination of cues (e.g., facial
expressions, body movements, posture) to communicate in-
formation. However, not all robots are equipped to replicate
such multimodal communication. For example, robots without
legs might move on wheels, some may lack arms, and others
may have only a head or a simple manipulator. To address
this variability, we assume robots using our proposed tech-
nique must possess human-like qualities, focusing on hand
motions as a primary means of communication. This minimal
assumption ensures flexibility, making the approach applicable
across different robot platforms. Although combining hand
motions with other modalities (e.g., head or body movements)
could enhance communication (e.g., a robot rotating its head or
tilting its body while presenting a smelly object), our approach
deliberately avoids multimodal dependencies to maximize
adaptability.

To enhance generalizability across cultures, our study ben-
efits from distinguishing between motor-control motions and
communicative motions. Motor-control motions are universal,
arising from innate responses to physical interaction (e.g.,
adjusting lifting speed for weight or withdrawing hand(s)
quickly from a hot surface). In contrast, communicative mo-
tions are socially motivated and explicitly designed to convey
information (e.g., rotating an object to indicate lightness or
supporting an object to suggest fragility). These culturally
influenced hand motions vary in interpretation, depending on
shared conventions and experiences. By highlighting these
distinctions, robots can be designed to interact naturally with
diverse user groups, ensuring effective communication across
different cultural contexts.

B. Optimization for System Performance

Enhancing system performance involves addressing multiple
aspects, including adaptability to time-critical scenarios, per-
sonalization, and distinguishing similar key elements across
object properties.

First, in time-critical scenarios, our system can be further
improved by reducing the resolution of conveyed properties.
For instance, similar properties such as hot and cold could

HRI 2025, March 4-6, 2025, Melbourne, Australia

be merged into a generalized cautionary category. Although
users may not differentiate the exact property, they will still
recognize the need for careful handling. This approach pri-
oritizes safety and efficiency in environments where detailed
communication is impractical.

Second, personalization can enhance performance by ac-
counting for variability in individual and cultural preferences.
Currently, utility metrics are derived from aggregated par-
ticipant ratings, which may overlook nuanced differences.
Incorporating personalization methods, such as tailoring utility
scores for users with similar preferences or cultural contexts,
could significantly improve effectiveness. Additionally, the
system can benefit from co-designing gestures with end-users
in specific environments, such as noisy or silent settings,
to identify a set of hand motions that are intuitive, easily
understood, and broadly applicable across diverse contexts.

Finally, distinguishing similar key elements across object
properties is crucial for reducing ambiguity. Some properties,
such as cold and sticky, share overlapping elements like “touch
and withdraw with pause,” while hot features a slight variation
of “touch and withdraw.” To address this challenge, the system
can prioritize emphasizing unique key elements specific to
each property, making the motions more distinct and easier
to interpret.

C. Limitations

While our system demonstrates its effectiveness in generat-
ing expressive and property-specific hand motions, it presents
a scalability limitation, particularly when integrating new
object properties. Each new property requires the identification
and extraction of key elements from actors’ role-plays, the
development of robot key elements, and the evaluation of
utility for these elements. Although this approach ensures the
generation of expressive and property-specific actions, it is
inherently time-intensive and resource-demanding.

Despite this challenge, we believe our system design pro-
vides a strong foundation for designing robot hand motions
that effectively communicate object properties, paving the way
for further advancements in this area.

VIII. CONCLUSION

In this paper, we investigated how robots communicate
properties through object manipulation. We first identified
eight categories of object properties and extracted a set of key
elements from role-plays. These elements were implemented
on a dual-arm robot and evaluated for their utility based on
participant feedback. To effectively convey object properties
within time constraints, we developed a property-based motion
planner that optimally balances utility and time ratio. Our
within-subjects study with 20 participants demonstrated that
individuals could accurately interpret these properties through
robot object manipulation.
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