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Abstract—To personalize the robot guide experience, the robot
needs to detect a person’s indifference and adjust its explanation
toward the person’s interest in topics. However, detecting the
person’s indifference is challenging in a museum, as we cannot
use a bulky wearable or facial expression recognition due to un-
expected light condition or standing position. We propose to ob-
serve people’s behaviors and movements on detecting people’s
indifference. To prove its feasibility, we invited 11 participants
to our in-lab museum-like environment. Qur robot explains ex-
hibits while videorecording the interaction. Then, we asked par-
ticipants to watch the recordings and report when they felt bored
or indifferent to the explanation. We labelled their movement
and matched them to their report so that we know which behav-
iors and movements hint the person’s indifference. We used the
decision tree and random forest methods to understand the com-
mon pattern when people are indifferent during the explanation
in a museum scenario. From our observation experiment, we
found that if the listener nods their heads many times or looks at
the exhibit for a long time, they are likely interested in the topic,
fewer overall movements or looking elsewhere hint that the lis-
tener may be indifferent, and if the explanation goes longer than
three minutes, the listener would be likely bored.

I. INTRODUCTION

Various kinds of robots have emerged in our daily life. One
is a guiding robot to provide the information while moving
with a user [1] or positioning as a kiosk-type [2]. Guide robots
can provide three major benefits: filling the reducing number
of human employees, providing flexible time schedule, and
personalizing their guide for each visitor (Figure 1).

For personalizing a visitor’s experience, one challenge for
a robot is to understand the visitor’s attention level. For exam-
ple, expert museum guides catch subtle changes of listeners’
reactions, understand listeners’ interest and indifferent in var-
ious topics, and adjust their storytelling and explanation to pro-
vide much satisfying tour experience. However, while a robot
can support human guides and provide novel experience to vis-
itors, they have a difficulty of understanding people’s indiffer-
ent level. Understanding people’s indifference to a robot’s ex-
planation is a key factor for a robot to provide personalized,
interesting, and satisfying experience to visitors in a museum.

There are various techniques to understand people’s emo-
tional states including interest and indifferent levels (e.g., ma-
chine-learning based facial expression recognition [3] or en-
gagement detection using electroencephalography [4]).
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Figure 1. A guide robot in a museum provides personalized explanations
to a visitor. This can be achieved by understanding the visitor’s interest
or indifference in real-time.

GO

However, they are not always accessible or feasible, especially
in our goal scenario — museum guide — as the visitor would
move around and the light condition is not guaranteed (i.e., de-
pending on the exhibition, the light condition varies). As such,
understanding people’s interest and indifferent level becomes
challenging in a museum scenario. To overcome this difficulty
and the limitation in a museum setting, we propose to observe
and utilize people’s behavior and movement data.

We conducted a data collection experiment in an in-lab
museum environment and analyzed the collected data to un-
derstand which behavior or movement is closely linked to peo-
ple’s indifference to the robot’s explanation. In summary, if
they are nodding many times or looking at the exhibit for a
long time, then they are likely interested in the explanation. If
a visitor makes fewer overall physical movements or looks at
somewhere else other than the robot or the exhibit, then they
likely feel bored or indifferent. Unless the explanation is
adapted (i.e., personalized), the listener will likely feel bored
if an explanation goes longer than three minutes.

Our findings indicate the possibilities of detecting people’s
indifference to robot explanations based on their behaviors and
movements in a museum. This can help the development of
future robot guides adjusting their explanations to each visitor
by detecting the visitor’s interest and indifferent level to robot
explanations in real-time. As such, museum visitors would en-
joy personalized and satisfying experience with guide robots.

II. RELATED WORK

Personalization in the museum is suggested and applied by
previous pioneers and field experts especially with human mu-
seum guides. The modern technology allows advanced person-
alization and recommendation (e.g., by storing people’s pro-
files) to provide engaging and satisfying experience to users in
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various systems [5]-[7]. In museum scenarios, many work
have been done for virtual tour experience instead of in-person
experience. We believe that similar personalization can be
done by utilizing a robot’s capabilities. In addition, the use of
robots is promising as robots can provide better experience
when we compare it to the traditional audio guide [8], [9].
Thus, we propose to use the robot to provide personalized and
satisfying experience to museum visitors by bringing the per-
sonalization techniques suggested for virtual museum tours.

Main characteristics of the museum guide robots are iden-
tifying and greeting a visitor, presenting exhibits, and express-
ing farewell [10]. Many researchers pointed various tech-
niques for successful social human-robot interactions [9]-[11].
In addition, researchers explored people’s perception on the
guide robots with personalized explanations [5] and how to
achieve social navigations for guiding in a museum [1]. While
the techniques and research lead us to believe the deployment
of advanced museum guide robots even in tomorrow, there is
one important but missing factor for the guide robot: detecting
a person’s interest or indifference. For a museum guide robot
to provide personalized explanations to a visitor, it needs to
understand the person’s interest or indifference to the exhibit
topics or explanations.

Understanding a person is an important topic in various
field; one we are specifically interested in is a person’s engage-
ment level. As it is closely related to human’s brain, electro-
encephalography (EEG) could be a good option to collect and
sense the relevant data [4], [12]. However, the downside of this
technique is the device. That is, the device is often bulky and
hard to move around while wearing it. Another option is to use
cameras to detect the person’s facial expressions, as they
would show the person’s current feeling [3]. However, as the
light conditions may change for different exhibits, in a mu-
seum, RGB-camera is not reliable. Depth cameras would not
be impacted much; however, depending on their installation
locations and a visitor’s standing pose or orientation, it may
not capture the visitor’s face well enough. For example, if the
camera is mounted on a robot, people behind of others would
not be visible to the robot. If it is mounted up on ceiling, it
would not be able to capture people’s face clearly. Thus, in-
stead of focusing on people’s facial expressions, we looked at
the visitor’s body movement which can be reliably detected by
ceiling mounted depth cameras.

There is a body of work on detecting people and their kin-
ematics using multiple depth cameras [13], [14]. Further re-
searchers explored possibilities of detecting people’s emo-
tional states from their pose data [15]. However, major chal-
lenge for the museum scenario is that the person may not make
a large movement (other than moving away from the exhibits).
Therefore, collectively, in this work, we explore the possibili-
ties of detecting people’s indifferent to museum guide robot’s
explanations using people’s behaviors and movements which
can be detected by ceiling-mounted depth cameras.

III. DATA COLLECTION

To understand how a person’s movement is correlated with
their indifference to robot’s explanations, we collected peo-
ple’s behavior and movement data in a robot-guided museum
scenario. We prepared three different exhibits in a room and
spaced them apart so that a person has enough room to move

)

Buddhist
statue

Robovie

Figure 2. The data collection experiment setup. There are three exhibits,
two Buddhist statues and one picture of a Buddhist statue. The robot
moves to an exhibit, looks at the visitor, and explains the exhibit.

away when they feel bored (Figure 2 and Figure 3). Generally
speaking, many museums have tangible items, drawings, and
pictures. As such, we prepared two Buddhist statues and one
picture of Buddhist statue to increase the feeling of being in a
museum. In addition, we expect many people would lose their
interest quickly enough while listening to Buddhist history.

To increase the intractability with a visitor and simulate
actual museum guide robot, we used a teen-sized humanoid
robot, Robovie. The robot can navigate the room while avoid-
ing obstacles (including the visitor), make gestures, and look
at the visitor while synthesizing speeches with a kid-like voice.
To track people and their movement, we installed multiple
ceiling-mounted depth cameras and grid them in a network
(a.k.a., sensor network). The sensor network can provide peo-
ple’s location, orientation, and pose data in real-time.

We let a participant enter the room and follow the robot’s
instruction which starts with a greeting. Then, the robot ex-
plains an exhibit (an explanation about an exhibit consists of
multiple topics, and it is about 10-minute long as we expect
most people lose their interest in Buddhist history in less than
10 minutes). We instruct the participant to leave or move away
anytime when they feel bored or indifferent. Then, the robot
starts its explanation of next exhibit. This continues until the
robot finishes its explanations of all three exhibits (a session).
After a short break in between sessions, we repeat the session
in total of three times. Hence, for each participant, we have
three sessions with three exhibits (as long as the time allows).

We carefully crafted our scripts for a robot to provide its
explanation on each exhibit without any command phrases
such as “look here” as this would impact people’s behaviors.
In addition, to prevent the participant from listening to the ex-
act same explanations, a robot continues its explanation where
it left off for the next session (Figure 3). This would decrease
the impact of getting indifferent by listening to the same ex-
planation in next sessions.

While a participant is in the room, we captured their move-
ment and videorecorded the interactions. Soon after all ses-
sions, we watched the scene together with the participant and
asked them to tell us at which point they felt bored or indiffer-
ent. Since the indifference is a person’s internal state, it is dif-
ficult to measure accurately other than asking the person in-
situ. That is, only the person would know the ground truth.
Thus, we decide to ask participants to express their feelings
while watching the video together.
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A. Two Buddha statues

B. A depth camera from the collection of sensors
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C. The robot’s explanation logic. In this example, the robot
continues from topic 3 in the second session

Figure 3. For data collection, we prepared three Buddha related items (two physical ones and one picture), ten ceiling-mounted depth cameras, and expla-
nation scripts with in-house software to smoothly continue the robot’s explanation from where it left off.

We recruited 11 participants from the general public (20 ~
50 years old, 2 males and 9 females). We gave honorariums of
3000 JPY to them for their 2-hour participation. This study is
approved by the institution’s ethics board. From the data col-
lection sessions, we collected 95 discrete datasets. Since there
were 11 people, 3 sessions, and 3 exhibits, the total datasets
should have been counted 99; however, there were three da-
tasets (one session) missing. For one participant, we could
only get one partial and two complete datasets due to a tech-
nical issue, and we did not have enough time to redo a session.

IV. EXTRACTING ATTRIBUTES

While boredom or indifference are rather continuous state
(e.g., a bit boring, really boring, etc.), as an initial step of our
exploration, we asked participant to report their indifference in
a binary state. That is, the participant is going to tell us when
they felt indifferent (i.e., indifference to which topic), and we
assume that they did not feel indifferent for the other topics.

For the participants’ behaviors and movements, one re-
searcher labelled all of them (e.g., gestures, nodding, moving
away) by hand while watching all videorecords. We matched
these labels to participants’ reports on their indifference to top-
ics (i.e., topic classification). Participants did not speak during
the robot’s explanations. Note that we labelled behaviors and
movements, as our scenario assumes that participants’ facial
expression is not recognizable due to various light settings and
their masks. Additionally, while we believe that these can be
detected automatically, we labelled them manually as this
work is not about automating human behavior detections.

Out of all 546 topics, we found 188 topics marked as neg-
ative (the non-marked are positive). From the researcher’s la-
belling, we got 6170 behavior and movement labels in total.
We explain movement types below.

A. Head Orientation

the listener looks up including slightly

look up oblique orientation
the listener turns their head to somewhere
look away else other than the robot and the exhibit

while not looking up

B. Head Movement

In addition to the head orientation, we think people’s head
movement provides some hints on their interest level.

the listener nods their head deeply (make a

nod deeply large movement)
small nod the listener makes a small nod
nod once the listener nods their head once

nod many times the listener nods their head many times

tilt their head side-
ways

the listener tilts their head while facing for-
ward

C. Peek at the Exhibit

We observed some peeking actions. We separated the la-
bels based on how big the movement is and peeking direction.

the listener gets their head closer to the ex-

peek lightly hibit

the listener gets their head and torso closer
take a closer look -

to the exhibit
tilt their body the listener tilts their body sideways and
sideways peek at the exhibit’s side

D. Arms or Hands

We observed people’s hand- or arm- motions while listen-
ing to the robot’s explanation.

. , . . L touch their cloth  the listener touches or fixes their cloth
We think that people’s head orientation has rich infor- : : . :
mation especially in relation to their interest or indifference. touch their head  the listener touches their face or hair

the listener turns their head to the robot play with hands the hsteper tot}ches their fingers or hands or

turn to the robot from somewhere else plays with their hands
o the listener turns their head to the exhibit Cross arms the listener crosses their arms in front of

turn to the exhibit them

from somewhere else
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place both hands

behind the listener places their hands behind

E. Body

We observed people’s body movements without moving
from one place to another. As we think they are an important
hint for the person’s indifference, we labelled them as well.

the listener moves their legs or crosses them

move their legs without moving from the position

the listener lightly swings their torso side-

swing their body ways

twist their body  the listener lightly twists their torso

F. Locomotion

We labelled both moving during the explanation and leav-
ing after the explanation. The leaving denotes the end of a
round for the exhibit, we did not use this label for identifying
indifference, but used as the end mark.

move closer the listener moves closer toward the exhibit

the listener changes their standing position
without changing their distance to the exhibit
(e.g., small sidewalks)

change position

the listener moves away from the exhibit

move away while facing it

the listener faces elsewhere and moves away

leave from the robot and the explaining exhibit

G. Time-based Rate

We normalized the topic length so that the timestamp.
Then, we prepared five more attributes based on the time.

the elapsed time since the robot starts ex-

clapsed time plaining the exhibit

rate for looking at
the robot

how long the listener looked at the robot
within the topic

rate for looking at
the exhibit

how long the listener looked at the exhibit
within the topic

how long the listener looked up within the

rate for looking up topic

rate for looking
elsewhere

how long the listener looked elsewhere
within the topic

The sum of the rates of looking somewhere is 100 percent.
For example, if the listener looked at the robot for 75 percent
of time and at the exhibit for 25%, then the rate for looking up
and elsewhere would be zero.

V. ANALYSIS OF THE INTERACTION DATA

Since there were more numbers of positive labels than neg-
ative labels, we adjusted the class weight based on the differ-
ence. We calculated the weight by

_ NTotalLabels
" 2 % NClassLabels

where NTotalLabels is the total number of labels and
NClassLabels is either the number of positive or negative

elapsed time §

rate for looking elsewhere
rate for looking at the exhibit
small nod

nod many times

move their legs

rate for looking at the robot
turn to the robot

turn to the exhibit

look away

small nod

swing their body

twist their body

tilt their head sideways
peek lightly

move closer

touch their head

move away

play with hands

nod deeply

place both hands behind
touch their cloth

take a closer look

change position

play with hands

tilt their body sideways
rate for looking up

look up

0.00 0.02 0.04 0.06 0.08 0.10

B Importance

Figure 4. The feature importance from the random forest.

labels. That is the weight of the negative class is higher than
the weight of the positive class.

A. Cross Validation

We set each participant data to be the test set and evaluate
our model by cross validation (i.e., leave-one-out cross-vali-
dation). As a result, the accuracy is 68.2%, the recall is 0.413,
the specificity is 0.817, the F-measure is 0.463, respectively.
We use model based only on distribution of positive or nega-
tive label as baseline model because we want to get knowledge
about action each feature on identification. Accuracy by the
baseline model is 54%, so our model is 14.2% higher.

B. Evaluation of the Feature Importance

To understand the importance of each feature (i.e., each la-
bel), we feed our data to the random forest method with Gini
importance (Figure 4). We can visually understand how much
the feature contributes to splitting the samples and is calcu-
lated by amount of lowered Gini impurity by the feature. From
the results, we can see that the elapsed time is the most im-
portant attribute followed by how long the listener looks at the
exhibit or elsewhere. Figure 5 shows partial dependence plot
(PDP) of elapsed time. This express marginal effect of elapsed
time to output of our model. In this case, the higher partial de-
pendence gets, the higher the probability of negative label is.
From this, we can see that our participants’ indifference
changes over time. Especially, we can see that their feeling of
indifference increases until about 3-minute mark, but de-
creases afterward (i.e., the degree of interesting is proportional
to elapsed time). We believe that this is because participants
were able to get away from the explanation in this experiment.
From our records, we noticed that they stayed and listened to
the guide for at least 3 minutes even if they feel indifferent.

Among the listener’s movement labels, their head move-
ments (i.e., small nod, turn to the robot, turn to the exhibif) are
considered as important movements than others. Nodding
could be considered as positive feedback in human-human in-
teraction. Additionally, since both of turning face and the time
rate of looking somewhere are important, we should focus on
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Figure 5. Partial dependence plot of elapsed time. Partial dependence in-
creases up to 200 seconds and decrease since then.

head reaction much more. On the other hand, body and hand
movements do not have much influence in the model except
moving their legs. It shows the general knowledge which lis-
teners stir when they are not interested can only be noticeable
with their legs.

C. Decision Tree
After confirming the baseline accuracy from the random

forest with our data, we created a decision tree with all our data.

In this process, to prevent the tree from being meaninglessly
repetitive, we set the maximum depth to be 10 and used the
cost-complexity pruning method. This method uses a parame-
ter a to how determine the size of tree. The alpha decides the
penalty of having a big tree (i.e., the bigger alpha means the
higher penalty, thus the method prunes more branches).

move their legs < 0.064

[139.55, 156.83]
Neg

rate for looking at the exhibit < 0.662

[138.788, 136.5]
Pos

N

rate for looking at the exhibit < 0.722
193

touch their head < 0.013
8

3
[33.553, 56.633]
e

Neg
65
[31.265, 34.851]
Neg

[105.235, 79.867]
S

i

move closer < 0.033

Pos

140
[68.631, 72.606]
Neg

130
[61.006, 72.606]
Neg

[107.522, 23.234]
0s

157
P

twist their body < 0.011
178
[93.796, 79.867]

[25.165, 7.261]

38
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Figure 6. The result decision tree’s accuracy, precision, and recall for
each a from 0 to 0.015. X-axis is o value while Y-axis is the accuracy in
the scale of 0 to 1 inclusive.

We explored the tree’s accuracy, precision, and recall rate
for each a value to determine appropriate o (Figure 6). The
precision increases when « is higher than 0.011. However, this
is because we prune too many branches and finally tree has
only one node. When a is 0.007, it shows the highest recall
rate. Thus, we think a = 0.007 is the appropriate parameter.
The final decision tree can be seen in Figure 7.

From the decision tree, we can say that features of head
(rate for looking elsewhere, small nod, look away) are mainly
focused on identification as before. There is peek lightly in sec-
ond node, but its importance is not high as it only splits 9 sam-
ples from 87 samples. Elapsed time is not used in the high-
level branch even if their importance is high in the random for-
est analysis (Figure 4). This means elapsed time acts as an aux-
iliary in our decision tree.

rate for looking elsewhere < 0.084
samples = 546
value = [273.0, 273.0]
class = Neg

True

small nod = 0.015
459
[252.411, 185.872]
Pos

twist their body < 0.039
168
[112.86, 29.043]
Pos

[5.338,2.904]
Pos

look away < 0.055

nod many times < 0.023

[5.338, 5.809] } [8.388, 15.973]
Neg Neg

Figure 7. The final decision tree with the cost-complexity pruning parameter a=0.007.
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Looking at the nodes after second level, we can see the
most of them lead to negative when there is a fewer number of
features. We can also see that a listener makes fewer overall
physical movements when they are bored from the features ex-
cept elapsed time and rate for X which is a frequency. Further,
by observing each node, we can assume that a person likely
felt indifferent when they look elsewhere for 10% or longer
time for a topic. It is the same for few small nods. Move their
legs splits just a few samples but strong tendency to negative
appears when that frequency is higher than 0.064.

VI. DISCUSSION AND LIMITATIONS

One benefit of using the decision tree and random forest
methods is to see the feature importance and understand the
logic by following the nodes. From there, while we assumed
that the participant’s head orientation may be one key aspect
of detecting their indifference, we found that the rate (how
long they spent time doing it) is important in the random forest.
This hints that the simplest model could be detecting the per-
son’s look direction. That is, by knowing the person’s look di-
rection, we may be able to achieve some level of indifference
detections. However, we are not sure how this would work
compared to our decision tree. We need to confirm our deci-
sion tree’s performance and explore other detection methods.

Another key point is the person’s head movement. In gen-
eral, more than their whole-body movements or hand move-
ments, head movements are noticeably important. For exam-
ple, if the person nods many times, it can be a hint that the
person is interested (rather, the person does not feel indiffer-
ent). However, there is one caveat before making a conclusion
from our findings — culture.

Our experiment was conducted in Japan. There is a stereo-
type that many Japanese nods their head to signify the speaker
that they are listening to the speaker. In addition, we found that
they make a fewer overall physical movements as they get
bored. We are not sure if this also has a cultural influence. We
need further investigation in other cultures.

In this work, we observed one participant’s interaction
with one robot. As a group, people’s social dynamics changes,
and this may influence their behaviors and movements around
the robot explaining the exhibit. As such, this work’s findings
are limited, and we note that further investigation is required.

VII. CONCLUSION

In this paper, we argued that museum robots should be able
to make a personalized guide by detecting visitors’ interest and
indifference. To achieve this goal, they must be able to detect
in which topic the visitor feels indifferent and adjust their on-
going explanation accordingly. We described in-lab experi-
ment to collect people’s behavior and movement data in a mu-
seum-like environment. We analyzed the data, presented the
results, and discussed our thoughts and limitations.

In summary, we found several behaviors and movements
are likely linked to a person’s interest and indifference to the
robot’s explanation.

1. The more time a listener spends looking at the exhibit
or the robot, the more likely they are interested in the

explanations (i.e., a listener gazes away from the ex-
hibit and the robot when they feel indifferent).

2. A listener makes fewer overall physical movements
when they are bored; if they are interested in, they may
make many small nods.

3. A listener stays for about three minutes before leaving
even if the explanation is not interesting.

This shows that we can detect a person’s indifferent level
from simple human behaviors and movements. In near future,
we would like to develop a personalization module by detect-
ing a person’s indifference and tuning ongoing explanations in
real-time in museum scenarios to increase the visitors’ engage-
ment and satisfaction.
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